Share Email Print
cover

Proceedings Paper

Design and analysis of ultrasonic actuator in consideration of length reduction for a USDC (ultrasonic/sonic driller/corer)
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Sample return and in-situ sampling and analysis is one of the major objectives of future NASA exploration missions. Existing drilling techniques are limited by the need for large axial forces, holding torques, and high power consumption. Lightweight robots and rovers have difficulties accommodating these requirements. To address these key challenges to the NASA objective of planetary in-situ rock sampling and analysis, a drilling technology called ultrasonic/sonic driller/corer (USDC) was developed. The USDC uses a novel driving mechanism, transferring ultrasonic vibration to sonic frequency impacts with the aid of a free-flying mass block (free-mass). The free mass then drives the drill bit. The actuator consists of a stack of piezoelectric disks with a horn that amplifies the induced vibration amplitudes. The standard USDC is a slender device, and some times its length is too long for specific NASA missions. It is of current interest to have novel designs that reduce the length of the device. For this purpose, two novel horn designs were examined analytically. One is the flipped horn, the other is the planar folded horn. The new designs of the horn were analyzed using finite element modeling and the results allow for the determination of the control parameters that can optimize the performance of the ultrasonic horn in terms of the tip displacement and velocity. The results of the modeling are described and discussed in this paper.

Paper Details

Date Published: 5 May 2005
PDF: 8 pages
Proc. SPIE 5762, Smart Structures and Materials 2005: Industrial and Commercial Applications of Smart Structures Technologies, (5 May 2005); doi: 10.1117/12.598851
Show Author Affiliations
Zensheu Chang, Jet Propulsion Lab. (United States)
Stewart Sherrit, Jet Propulsion Lab. (United States)
Mircea Badescu, Jet Propulsion Lab. (United States)
Xiaoqi Bao, Jet Propulsion Lab. (United States)
Yoseph Bar-Cohen, Jet Propulsion Lab. (United States)


Published in SPIE Proceedings Vol. 5762:
Smart Structures and Materials 2005: Industrial and Commercial Applications of Smart Structures Technologies
Edward V. White, Editor(s)

© SPIE. Terms of Use
Back to Top