Share Email Print
cover

Proceedings Paper

New semi-active damping concept using eddy currents
Author(s): Henry A. Sodano; Daniel J. Inman; W. Keith Belvin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A damping effect can be induced on a conductive structure that is vibrating in a magnetic field. This damping effect is caused by the eddy currents that are induced in the material due to a time varying magnetic field. The density of these currents is directly related to the velocity of the conductor in the magnetic field. However, once the currents are formed the internal resistance of the conductive material causes them to dissipate into heat, resulting in a removal of energy from the system and a damping effect. In a previous study, a permanent magnetic was fixed in a location such that the poling axis was perpendicular to the beam's motion and the radial magnetic flux was used to passively suppress the beam’s vibration. Using this passive damping concept and the idea that the damping force is directly related to the velocity of the conductor, a new semi-active damping mechanism will be created. This new damper will function by allowing the position of the magnet to change relative to the beam and thus allowing the net velocity between the two to be maximized and the damping force significantly increased. Using this concept, a model of both the passive and active portion of the system will be developed, allowing the beams response to be simulated. To verify the accuracy of this model, experiments will be performed that demonstrate both the accuracy of the model and the effectiveness of this semi-active control system for use in suppressing the transverse vibration of a structure.

Paper Details

Date Published: 16 May 2005
PDF: 12 pages
Proc. SPIE 5760, Smart Structures and Materials 2005: Damping and Isolation, (16 May 2005); doi: 10.1117/12.598755
Show Author Affiliations
Henry A. Sodano, Virginia Polytechnic Institute and State Univ. (United States)
Daniel J. Inman, Virginia Polytechnic Institute and State Univ. (United States)
W. Keith Belvin, NASA Langley Research Ctr. (United States)


Published in SPIE Proceedings Vol. 5760:
Smart Structures and Materials 2005: Damping and Isolation
Kon-Well Wang, Editor(s)

© SPIE. Terms of Use
Back to Top