Share Email Print
cover

Proceedings Paper

A dual-mode actinic EUV mask inspection tool
Author(s): Yanwei Liu; Anton Barty; Eric Gullikson; John S. Taylor; J. Alexander Liddle; Obert Wood
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

To qualify the performance of non-actinic inspection tools, a novel EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron facility at Lawrence Berkeley National Laboratory. Similar to the older generation actinic mask inspection tool1, the new system can operate in scanning mode, when mask blanks are scanned for defects using 13.5-nm in-band radiation to identify and map all locations on the mask that scatter a significant amount of EUV light. By modifying and optimizing beamline optics (11.3.2 at ALS) and replacing K-B focusing mirrors with a high quality Schwarzschild illuminator, the new system achieves an order of magnitude improvement on in-band EUV flux density at the mask, enabling faster scanning speed and higher sensitivity to smaller defects. Moreover, the system can also operate in imaging mode, when it becomes a zone-plate-based full-field EUV microscope with spatial resolution better than 100 nm. The microscope utilizes an off-axis setup, making it possible to obtain bright field images over a field-of-view of 5x5 um2.

Paper Details

Date Published: 6 May 2005
PDF: 10 pages
Proc. SPIE 5751, Emerging Lithographic Technologies IX, (6 May 2005); doi: 10.1117/12.598559
Show Author Affiliations
Yanwei Liu, Lawrence Berkeley National Lab. (United States)
Anton Barty, Lawrence Livermore National Lab. (United States)
Eric Gullikson, Lawrence Berkeley National Lab. (United States)
John S. Taylor, Lawrence Livermore National Lab. (United States)
J. Alexander Liddle, Lawrence Berkeley National Lab. (United States)
Obert Wood, SEMATECH (United States)


Published in SPIE Proceedings Vol. 5751:
Emerging Lithographic Technologies IX
R. Scott Mackay, Editor(s)

© SPIE. Terms of Use
Back to Top