Share Email Print
cover

Proceedings Paper

The performances of different overlay mark types at 65nm node on 300-mm wafers
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The integrated circuit (IC) manufacturing factories have measured overlay with conventional "box-in-box" (BiB) or "frame-in-frame" (FiF) structures for many years. Since UMC played as a roll of world class IC foundry service provider, tighter and tighter alignment accuracy specs need to be achieved from generation to generation to meet any kind of customers' requirement, especially according to International Technology Roadmap for Semiconductors (ITRS) 2003 METROLOGY section1. The process noises resulting from dishing, overlay mark damaging by chemical mechanism polishing (CMP), and the variation of film thickness during deposition are factors which can be very problematic in mark alignment. For example, the conventional "box-in-box" overlay marks could be damaged easily by CMP, because the less local pattern density and wide feature width of the box induce either dishing or asymmetric damages for the measurement targets, which will make the overlay measurement varied and difficult. After Advanced Imaging Metrology (AIM) overlay targets was introduced by KLA-Tencor, studies in the past shown AIM was more robust in overlay metrology than conventional FiF or BiB targets. In this study, the applications of AIM overlay marks under different process conditions will be discussed and compared with the conventional overlay targets. To evaluate the overlay mark performance against process variation on 65nm technology node in 300-mm wafer, three critical layers were chosen in this study. These three layers were Poly, Contact, and Cu-Metal. The overlay targets used for performance comparison were BiB and Non-Segmented AIM (NS AIM) marks. We compared the overlay mark performance on two main areas. The first one was total measurement uncertainty (TMU)3 related items that include Tool Induced Shift (TIS) variability, precision, and matching. The other area is the target robustness against process variations. Based on the present study AIM mark demonstrated an equal or better performance in the TMU related items under our process conditions. However, when non-optimized tungsten CMP was introduced in the tungsten contact process, due to the dense grating line structure design, we found that AIM mark was much more robust than BiB overlay target.

Paper Details

Date Published: 10 May 2005
PDF: 11 pages
Proc. SPIE 5752, Metrology, Inspection, and Process Control for Microlithography XIX, (10 May 2005); doi: 10.1117/12.598424
Show Author Affiliations
H. T. Tseng, United Microelectronics Corp. (Taiwan)
Ling-Chieh Lin, United Microelectronics Corp. (Taiwan)
I. H. Huang, United Microelectronics Corp. (Taiwan)
Benjamin Szu-Min Lin, United Microelectronics Corp. (Taiwan)
Chin-Chou Kevin Huang, KLA-Tencor Corp. (United States)
Chien-Jen Huang, KLA-Tencor Corp. (United States)


Published in SPIE Proceedings Vol. 5752:
Metrology, Inspection, and Process Control for Microlithography XIX
Richard M. Silver, Editor(s)

© SPIE. Terms of Use
Back to Top