Share Email Print

Proceedings Paper

Focused ion-beam process monitoring
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The recent development of focused ion beam systems with image resolution in the 20 nm regime has made practical a new process monitoring discipline, in-line x-y-z metrology. At any step in the wafer fabrication cycle, it is now possible to rapidly image a top view or cross sectional profile of the exact location on a chip or test structure where monitoring is required. For example, one can examine metal and oxide step coverage, via dimensions, resist profiles, metal grain size, or film quality. Under computer automation, any region on an 8' wafer can be located. A hole several microns deep and wide can be milled at this site, the wafer tilted up to 60 degree(s), and the walls of this hole imaged at magnifications approaching 70,000 times. Any arbitrary sequence of steps may be linked together to define a procedure which could be applied to wafer after wafer. Image information available during such a sequence can be uploaded to a host computer and statistical process control methods applied to the image parameters of interest. In this paper we describe the characteristics of a new focused ion beam system, its hardware and software control, and typical results from the cross sectioning of a 4 Mb DRAM.

Paper Details

Date Published: 1 June 1992
PDF: 5 pages
Proc. SPIE 1673, Integrated Circuit Metrology, Inspection, and Process Control VI, (1 June 1992); doi: 10.1117/12.59828
Show Author Affiliations
William B. Thompson, Micrion Corp. (United States)
Randall G. Lee, Micrion Corp. (United States)

Published in SPIE Proceedings Vol. 1673:
Integrated Circuit Metrology, Inspection, and Process Control VI
Michael T. Postek, Editor(s)

© SPIE. Terms of Use
Back to Top