Share Email Print
cover

Proceedings Paper

Estimation of corrosion damage in steel reinforced mortar using waveguides
Author(s): Henrique Reis; Benjamin L. Ervin; Daniel A. Kuchma; Jennifer Bernhard
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Corrosion of reinforced concrete is a chronic infrastructure problem, particularly in areas with deicing salt and marine exposure. To maintain structural integrity, a testing method is needed to identify areas of corroding reinforcement. For purposes of rehabilitation, the method must also be able to evaluate the degree, rate and location of damage. Towards the development of a wireless embedded sensor system to monitor and assess corrosion damage in reinforced concrete, reinforced mortar specimens were manufactured with seeded defects to simulate corrosion damage. Taking advantage of waveguide effects of the reinforcing bars, these specimens were then tested using an ultrasonic approach. Using the same ultrasonic approach, specimens without seeded defects were also monitored during accelerated corrosion tests. Both the ultrasonic sending and the receiving transducers were mounted on the steel rebar. Advantage was taken of the lower frequency (<250 kHz) fundamental flexural propagation mode because of its relatively large displacements at the interface between the reinforcing steel and the surrounding concrete. Waveform energy (indicative of attenuation) is presented and discussed in terms of corrosion damage. Current results indicate that the loss of bond strength between the reinforcing steel and the surrounding concrete can be detected and evaluated.

Paper Details

Date Published: 19 May 2005
PDF: 10 pages
Proc. SPIE 5767, Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV, (19 May 2005); doi: 10.1117/12.598276
Show Author Affiliations
Henrique Reis, Univ. of Illinois/Urbana-Champaign (United States)
Benjamin L. Ervin, Univ. of Illinois/Urbana-Champaign (United States)
Daniel A. Kuchma, Univ. of Illinois/Urbana-Champaign (United States)
Jennifer Bernhard, Univ. of Illinois/Urbana-Champaign (United States)


Published in SPIE Proceedings Vol. 5767:
Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV
Peter J. Shull; Andrew L. Gyekenyesi; Aftab A. Mufti, Editor(s)

© SPIE. Terms of Use
Back to Top