Share Email Print
cover

Proceedings Paper

Nonlinear forced oscillations of piezoelectric resonators
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Forced oscillations of piezoelectric, micro-electromechanical (MEMS) resonators fabricated as clamped-clamped composite structures are studied in this effort. Piezoelectric actuation is used to excite these structures on the input side and piezoelectric sensing is carried out on the output side. Each resonator structure is modeled as an Euler-Bernoulli beam with axially varying properties across the length and distributed actuation. A nonlinear integro-partial differential system is derived to describe the micro-resonator. For weak damping and weak forcing, the method of multiple scales is used to obtain an approximate solution of the system about a post-buckling position. The different modeling assumptions are presented and discussed, and the analytical prediction is compared with experimental observation.

Paper Details

Date Published: 19 May 2005
PDF: 12 pages
Proc. SPIE 5757, Smart Structures and Materials 2005: Modeling, Signal Processing, and Control, (19 May 2005); doi: 10.1117/12.597950
Show Author Affiliations
H. Li, Univ. of Maryland/College Park (United States)
S. Preidikman, Univ. of Maryland/College Park (United States)
B. Balachandran, Univ. of Maryland/College Park (United States)


Published in SPIE Proceedings Vol. 5757:
Smart Structures and Materials 2005: Modeling, Signal Processing, and Control
Ralph C. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top