Share Email Print

Proceedings Paper

Analysis of photosensitive salt distribution in polymer films by 19F multiple-quantum NMR
Author(s): Bruce E. Scruggs; Karen K. Gleason
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this work, the dispersion of triphenylsulfonium metal-fluoride salts in polymer films modeling chemically amplified resist systems has been characterized by solid-state 19F multiple-quantum nuclear magnetic resonance (MQ-NMR). Previously, this technique has been used to characterize 1H distributions on a length scale of approximately 20 angstroms in various materials. In agreement with differential scanning calorimetry, metal- fluoride salts were shown to be immiscible with the nonpolar polymers, poly-n- butylmethacrylate (PnBMA) and poly-isobutylmethacrylate (PiBMA), with no indication of individual salt molecules solubilized within the polymer matrix. Metal-fluoride salts in poly- methylmethacrylate (PMMA) were observed to be dispersed on a molecular scale even at a salt loading of 20% wt/wt. Although observed by electron microscopy, evidence of larger aggregates is absent in the MQ-NMR data of the salt/PMMA films, indicating that these aggregates represent a small fraction of the total salt in these films. In addition, unlike electron microscopy, MQ-NMR is nondestructive with respect to the photosensitive salt and polymers comprising resist systems.

Paper Details

Date Published: 1 June 1992
PDF: 10 pages
Proc. SPIE 1672, Advances in Resist Technology and Processing IX, (1 June 1992); doi: 10.1117/12.59752
Show Author Affiliations
Bruce E. Scruggs, Massachusetts Institute of Technology (United States)
Karen K. Gleason, Massachusetts Institute of Technology (United States)

Published in SPIE Proceedings Vol. 1672:
Advances in Resist Technology and Processing IX
Anthony E. Novembre, Editor(s)

© SPIE. Terms of Use
Back to Top