Share Email Print
cover

Proceedings Paper

Application of vibration-based damage detection to an integral abutment bridge
Author(s): Abu B. Siddique; Leon D. Wegner; Bruce F. Sparling
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Vibration-based damage detection (VBDD) methods use changes to the dynamic characteristics of a structure (i.e. its natural frequencies, mode shapes, and damping properties) to detect the presence of damage and determine its location. The application of these methods to constructed civil engineering facilities is complicated by a number of factors unique to these structures. Despite the challenges, the development of reliable VBDD methods for constructed facilities has the potential for great benefit and cost savings to infrastructure owners. This paper focuses on the application of VBDD techniques based on changes to mode shapes to a two-span, slab-on-girder, integral abutment bridge in Saskatoon, Canada. The dynamic response of the bridge under ambient traffic loading has been measured periodically using temporarily installed accelerometers over a range of ambient temperatures. A detailed finite element (FE) model has been developed and calibrated to match the first three measured natural frequencies and mode shapes. This model was then used to simulate the dynamic response of the bridge as various states of small-scale damage were induced, and several VBDD techniques were applied to detect and locate the damage. Preliminary results show that the ambient temperature significantly influences measured natural frequencies. In addition, the presence and location of damage may be found using any of VBDD techniques. The performance of the techniques is influenced by the number of sensors used to characterize mode shapes, as well as by the procedures used to normalize the mode shapes.

Paper Details

Date Published: 19 May 2005
PDF: 11 pages
Proc. SPIE 5767, Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV, (19 May 2005); doi: 10.1117/12.597510
Show Author Affiliations
Abu B. Siddique, Univ. of Saskatchewan (Canada)
Leon D. Wegner, Univ. of Saskatchewan (Canada)
Bruce F. Sparling, Univ. of Saskatchewan (Canada)


Published in SPIE Proceedings Vol. 5767:
Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV
Peter J. Shull; Andrew L. Gyekenyesi; Aftab A. Mufti, Editor(s)

© SPIE. Terms of Use
Back to Top