Share Email Print
cover

Proceedings Paper

Domain decomposition method for diffuse optical tomography
Author(s): Kiwoon Kwon; Il-young Son; Birsen Yazici
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Diffuse optical tomography is modelled as an optimization problem to find the absorption and scattering coefficients that minimize the error between the measured photon density function and the approximated one computed using the coefficients. The problem is composed of two steps: the forward solver to compute the photon density function and its Jacobian (with respect to the coefficients), and the inverse solver to update the coefficients based on the photon density function and its Jacobian attained in the forward solver. The resulting problem is nonlinear and highly ill-posed. Thus, it requires large amount of computation for high quality image. As such, for real time application, it is highly desirable to reduce the amount of computation needed. In this paper, domain decomposition method is adopted to decrease the computation complexity of the problem. Two level multiplicative overlapping domain decomposition method is used to compute the photon density function and its Jacobian at the inner loop and extended to compute the estimated changes in the coefficients in the outer loop. Local convergence for the two-level space decomposition for the outer loop is shown for the case when the variance of the coefficients is small.

Paper Details

Date Published: 11 March 2005
PDF: 12 pages
Proc. SPIE 5674, Computational Imaging III, (11 March 2005); doi: 10.1117/12.597292
Show Author Affiliations
Kiwoon Kwon, Rensselaer Polytechnic Institute (United States)
Il-young Son, Rensselaer Polytechnic Institute (United States)
Birsen Yazici, Rensselaer Polytechnic Institute (United States)


Published in SPIE Proceedings Vol. 5674:
Computational Imaging III
Charles A. Bouman; Eric L. Miller, Editor(s)

© SPIE. Terms of Use
Back to Top