Share Email Print

Proceedings Paper

Real-time windowing in imaging radar using FPGA technique
Author(s): Volodymyr I. Ponomaryov; Enrique Escamilla-Hernandez
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The imaging radar uses the high frequency electromagnetic waves reflected from different objects for estimating of its parameters. Pulse compression is a standard signal processing technique used to minimize the peak transmission power and to maximize SNR, and to get a better resolution. Usually the pulse compression can be achieved using a matched filter. The level of the side-lobes in the imaging radar can be reduced using the special weighting function processing. There are very known different weighting functions: Hamming, Hanning, Blackman, Chebyshev, Blackman-Harris, Kaiser-Bessel, etc., widely used in the signal processing applications. Field Programmable Gate Arrays (FPGAs) offers great benefits like instantaneous implementation, dynamic reconfiguration, design, and field programmability. This reconfiguration makes FPGAs a better solution over custom-made integrated circuits. This work aims at demonstrating a reasonably flexible implementation of FM-linear signal and pulse compression using Matlab, Simulink, and System Generator. Employing FPGA and mentioned software we have proposed the pulse compression design on FPGA using classical and novel windows technique to reduce the side-lobes level. This permits increasing the detection ability of the small or nearly placed targets in imaging radar. The advantage of FPGA that can do parallelism in real time processing permits to realize the proposed algorithms. The paper also presents the experimental results of proposed windowing procedure in the marine radar with such the parameters: signal is linear FM (Chirp); frequency deviation DF is 9.375MHz; the pulse width T is 3.2μs; taps number in the matched filter is 800 taps; sampling frequency 253.125*106 MHz. It has been realized the reducing of side-lobes levels in real time permitting better resolution of the small targets.

Paper Details

Date Published: 25 February 2005
PDF: 10 pages
Proc. SPIE 5671, Real-Time Imaging IX, (25 February 2005); doi: 10.1117/12.596633
Show Author Affiliations
Volodymyr I. Ponomaryov, National Polytechnic Institute (Mexico)
Enrique Escamilla-Hernandez, National Polytechnic Institute (Mexico)

Published in SPIE Proceedings Vol. 5671:
Real-Time Imaging IX
Nasser Kehtarnavaz; Phillip A. Laplante, Editor(s)

© SPIE. Terms of Use
Back to Top