Share Email Print
cover

Proceedings Paper

MTF analysis of a prototype table-top inverse-geometry volumetric CT system
Author(s): Taly Gilat Schmidt; N. Robert Bennett; Samuel R. Mazin; Josh Star-Lack; Edward G. Solomon; Norbert J. Pelc
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This work investigates the modulation transfer function (MTF) of a prototype table-top inverse-geometry volumetric CT (IGCT) system. The IGCT system has been proposed to acquire sufficient volumetric data in one circular rotation using a large-area scanned source and a narrower array of fast detectors. The source and detector arrays have the same axial, or slice, extent, thus providing sufficient volumetric coverage. A prototype system has been built using a NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) with the C-arm gantry in the horizontal position and a stage placed between the source and detector to rotate the scanned object. The resulting system has a 16-cm in-plane field of view (FOV) and 5-cm axial FOV. Two phantoms were constructed for measuring the MTF. A 76 micron tungsten wire placed axially in a plastic frame was used to measure the in-plane MTF, and the same wire slanted at 45 degrees was used to test the isotropy of the MTF. The data were calibrated for flat-field intensity and geometric misalignment and reconstructed using a modified 3D PET algorithm. For both phantoms, slices perpendicular to the wires were reconstructed. Simulations which model the IGCT system were used to verify the MTF measurement, along with analytical predictions. The measured MTF curve was similar in shape to the predicted curve with a 10% point at 20 lp/cm compared to a predicted 18 lp/cm. Future work will also study the uniformity of the MTF across the FOV and further characterize the IGCT system.

Paper Details

Date Published: 20 April 2005
PDF: 8 pages
Proc. SPIE 5745, Medical Imaging 2005: Physics of Medical Imaging, (20 April 2005); doi: 10.1117/12.596083
Show Author Affiliations
Taly Gilat Schmidt, Stanford Univ. (United States)
N. Robert Bennett, Stanford Univ. (United States)
Samuel R. Mazin, Stanford Univ. (United States)
Josh Star-Lack, NexRay, Inc. (United States)
Edward G. Solomon, NexRay, Inc. (United States)
Norbert J. Pelc, Stanford Univ. (United States)


Published in SPIE Proceedings Vol. 5745:
Medical Imaging 2005: Physics of Medical Imaging
Michael J. Flynn, Editor(s)

© SPIE. Terms of Use
Back to Top