Share Email Print
cover

Proceedings Paper

Surface smoothing and template partitioning for cranial implant CAD
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Employing patient-specific prefabricated implants can be an effective treatment for large cranial defects (i.e., > 25 cm2). We have previously demonstrated the use of Computer Aided Design (CAD) software that starts with the patient’s 3D head CT-scan. A template is accurately matched to the pre-detected skull defect margin. For unilateral cranial defects the template is derived from a left-to-right mirrored skull image. However, two problems arise: (1) slice edge artifacts generated during isosurface polygonalization are inherited by the final implant; and (2) partitioning (i.e., cookie-cutting) the implant surface from the mirrored skull image usually results in curvature discontinuities across the interface between the patient’s defect and the implant. To solve these problems, we introduce a novel space curve-to-surface partitioning algorithm following a ray-casting surface re-sampling and smoothing procedure. Specifically, the ray-cast re-sampling is followed by bilinear interpolation and low-pass filtering. The resulting surface has a highly regular grid-like topological structure of quadrilaterally arranged triangles. Then, we replace the regions to be partitioned with predefined sets of triangular elements thereby cutting the template surface to accurately fit the defect margin at high resolution and without surface curvature discontinuities. Comparisons of the CAD implants for five patients against the manually generated implant that the patient actually received show an average implant-patient gap of 0.45mm for the former and 2.96mm for the latter. Also, average maximum normalized curvature of interfacing surfaces was found to be smoother, 0.043, for the former than the latter, 0.097. This indicates that the CAD implants would provide a significantly better fit.

Paper Details

Date Published: 12 April 2005
PDF: 12 pages
Proc. SPIE 5744, Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display, (12 April 2005); doi: 10.1117/12.595950
Show Author Affiliations
Kyoung-june Min, Case Western Reserve Univ. (United States)
David Dean, Case Western Reserve Univ. (United States)


Published in SPIE Proceedings Vol. 5744:
Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display
Robert L. Galloway; Kevin R. Cleary, Editor(s)

© SPIE. Terms of Use
Back to Top