Share Email Print

Proceedings Paper

Generalized scale-based image filtering
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In medical imaging, low signal-to-noise ratio (SNR) and/or contrast-to-noise ratio (CNR) often cause many image processing algorithms to perform poorly. Postacquisition image filtering is an important off-line image processing approach widely employed to enhance the SNR and CNR. A major drawback of many filtering techniques is image degradation by diffusing/blurring edges and/or fine structures. In this paper, we introduce a scale-based filtering method that employs scale-dependent diffusion conductance to perform filtering. This approach utilizes novel object scale information via a concept called generalized ball scale, which imposes no shape, size, or anisotropic constraints unlike previously published ball scale-based filtering strategies. The object scale allows us to better control the filtering process by constraining smoothing in regions with fine details and in the vicinity of boundaries while permitting effective smoothing in the interior of homogeneous regions. Quantitative evaluations based on the Brainweb data sets show superior performance of generalized ball scale-based diffusive filtering over two existing methods, namely, ball scale-based and nonlinear complex diffusion process. Qualitative experiments based on both phantom and patient magnetic resonance images demonstrate that the generalized ball scale-based approach leads to better preserved fine details and edges.

Paper Details

Date Published: 29 April 2005
PDF: 11 pages
Proc. SPIE 5747, Medical Imaging 2005: Image Processing, (29 April 2005); doi: 10.1117/12.595784
Show Author Affiliations
Andre Souza, Univ. of Pennsylvania (United States)
Jayaram K. Udupa, Univ. of Pennsylvania (United States)
Anant Madabhushi, Univ. of Pennsylvania (United States)

Published in SPIE Proceedings Vol. 5747:
Medical Imaging 2005: Image Processing
J. Michael Fitzpatrick; Joseph M. Reinhardt, Editor(s)

© SPIE. Terms of Use
Back to Top