Share Email Print
cover

Proceedings Paper

3D segmentation of non-isolated pulmonary nodules in high resolution CT images
Author(s): Xiangwei Zhang; Geoffrey McLennan; Eric A. Hoffman; Milan Sonka
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The purpose of this study is to develop a computer-aided diagnosis (CAD) system to segment small size non-isolated pulmonary nodules in high resolution helical CT scans. A new automated method of segmenting juxtapleural nodules was proposed, in which a quadric surface fitting procedure was used to create a boundary between a juxtapleural nodule and its neighboring pleural surface. Experiments on some real CT nodule data showed that this method was able to yield results that reflect the local shape of the pleural surface. Additionally, a scheme based on parametrically deformable geometric model was developed to deal with the problem of segmenting nodules attached to vessels. A vessel segment connected to a nodule was modeled using superquadrics with parametric deformations. The boundary between a vascularized nodule and the attached vessels can be recovered by finding the deformed superquadrics which approximates the vessels. Gradient descent scheme was utilized to optimize the parameters of the superquadrics. Simple experiments on synthetic data showed this scheme is promising.

Paper Details

Date Published: 29 April 2005
PDF: 8 pages
Proc. SPIE 5747, Medical Imaging 2005: Image Processing, (29 April 2005); doi: 10.1117/12.594938
Show Author Affiliations
Xiangwei Zhang, Univ. of Iowa (United States)
Geoffrey McLennan, Univ. of Iowa (United States)
Eric A. Hoffman, Univ. of Iowa (United States)
Milan Sonka, Univ. of Iowa (United States)


Published in SPIE Proceedings Vol. 5747:
Medical Imaging 2005: Image Processing
J. Michael Fitzpatrick; Joseph M. Reinhardt, Editor(s)

© SPIE. Terms of Use
Back to Top