Share Email Print
cover

Proceedings Paper

Combining global and local parallel optimization for medical image registration
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Optimization is an important component in linear and nonlinear medical image registration. While common non-derivative approaches such as Powell's method are accurate and efficient, they cannot easily be adapted for parallel hardware. In this paper, new optimization strategies are proposed for parallel, shared-memory (SM) architectures. The Dividing Rectangles (DIRECT) global method is combined with the local Generalized Pattern Search (GPS) and Multidirectional Search (MDS) and to improve efficiency on multiprocessor systems. These methods require no derivatives, and can be used with all similarity metrics. In a multiresolution framework, DIRECT is performed with relaxed convergence criteria, followed by local refinement with MDS or GPS. In 3D-3D MRI rigid registration of simulated MS lesion volumes to normal brains with varying noise levels, DIRECT/MDS had the highest success rate, followed by DIRECT/GPS. DIRECT/GPS was the most efficient (5-10 seconds with 8 CPUs, and 10-20 seconds with 4 CPUs). DIRECT followed by MDS or GPS greatly increased efficiency while maintaining accuracy. Powell's method generally required more than 30 seconds (1 CPU) with a low success rate (0.3 or lower). This work indicates that parallel optimization on shared memory systems can markedly improve registration speed and accuracy, particularly for large initial misorientations.

Paper Details

Date Published: 29 April 2005
PDF: 12 pages
Proc. SPIE 5747, Medical Imaging 2005: Image Processing, (29 April 2005); doi: 10.1117/12.594673
Show Author Affiliations
Mark Paul Wachowiak, Robarts Research Institute (Canada)
Terry M. Peters, Robarts Research Institute (Canada)
Univ. of Western Ontario (Canada)


Published in SPIE Proceedings Vol. 5747:
Medical Imaging 2005: Image Processing
J. Michael Fitzpatrick; Joseph M. Reinhardt, Editor(s)

© SPIE. Terms of Use
Back to Top