Share Email Print
cover

Proceedings Paper

Image noise due to quantum fluctuations in flat-panel detector based cone-beam CT imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Quantum noise in cone beam CT (CBCT) imaging was studied to provide quantitative relationships among 3D cone beam image noise level and CT acquisition and reconstruction parameters, which include entrance exposure level, number of projections, and single detector size. It showed that the level of reconstructed image noise, which was caused by quantum noise in projection data, was spatially variant and related to the shape of the scan object, and that the image noise level was inversely proportional to the square root of entrance exposure level per projection, square root of number of projections, and square of detector size. Both computer simulations and real phantom studies were conducted to verify the derived quantitative relationships between image noise level and CT parameters. Shepp-logan head phantom was used in computer simulations to verify the theoretical relation between noise level and detector size, while a real cylindrical oil-uniformed phantom was studied to verify the theoretical relation between noise level and entrance exposure level. The real phantom studies were carried out on a flat panel detector (FPD)-based CBCT system available in our Lab. This work can provide a guide on how to balance various CBCT parameters to achieve satisfactory image quality with desired signal-to-noise ratio, specified spatial resolution, low contrast detectability and minimal x-ray radiation to patients.

Paper Details

Date Published: 20 April 2005
PDF: 8 pages
Proc. SPIE 5745, Medical Imaging 2005: Physics of Medical Imaging, (20 April 2005); doi: 10.1117/12.594672
Show Author Affiliations
Yan Zhang, Univ. of Rochester (United States)
Ruola Ning, Univ. of Rochester (United States)
David Conover, Univ. of Rochester Medical Ctr. (United States)
Yong Yu, Univ. of Rochester Medical Ctr. (United States)


Published in SPIE Proceedings Vol. 5745:
Medical Imaging 2005: Physics of Medical Imaging
Michael J. Flynn, Editor(s)

© SPIE. Terms of Use
Back to Top