Share Email Print

Proceedings Paper

Surface curvature estimation for automatic colonic polyp detection
Author(s): Adam Huang; Ronald M. Summers; Amy K. Hara
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Colonic polyps are growths on the inner wall of the colon. They appear like elliptical protrusions which can be detected by curvature-derived shape discriminators. For reasons of computation efficiency, much of the past work in computer-aided diagnostic CT colonography adopted kernel-based convolution methods in curvature estimation. However, kernel methods can yield erroneous results at thin structures where the gradient diminishes. In this paper, we investigate three surface patch fitting methods: Cubic B-spline, paraboloid, and quadratic polynomials. This "patch" approach is based on the fact that a surface can be re-oriented such that it can be approximated by a bivariate function locally. These patch methods are evaluated by synthesized data with various orientations and sampling sizes. We find that the cubic spline method performs best regardless of large orientation variances. Cubic spline and quadratic polynomial methods perform equally well for large samples while the latter performs better for small ones. Based on the performance evaluation, we propose a new, two-stage curvature estimation method. The cubic spline fitting is performed first for its insensitivity to orientation. If the spline fitting errs by more than a preset value (indicating high surface tortuosity), a small data sample is fitted by a quadratic function. The evaluation is performed on 29 patients (58 data sets). With 88.7% sensitivity, the average number of false positives per data set is reduced by 44.5% from 33.5 (kernel method) to 18.6 (new method).

Paper Details

Date Published: 14 April 2005
PDF: 10 pages
Proc. SPIE 5746, Medical Imaging 2005: Physiology, Function, and Structure from Medical Images, (14 April 2005); doi: 10.1117/12.594644
Show Author Affiliations
Adam Huang, National Institutes of Health (United States)
Ronald M. Summers, National Institutes of Health (United States)
Amy K. Hara, Mayo Clinic in Scottsdale (United States)

Published in SPIE Proceedings Vol. 5746:
Medical Imaging 2005: Physiology, Function, and Structure from Medical Images
Amir A. Amini; Armando Manduca, Editor(s)

© SPIE. Terms of Use
Back to Top