Share Email Print
cover

Proceedings Paper

Pilot clinical study of aneurysm rupture using image-based computational fluid dynamics models
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Although the natural history of cerebral aneurysms remains unknown, hemodynamics is thought to play an important role in their initiation, growth and rupture. This paper describes a pilot clinical study of the association between intraaneurysmal hemodynamic characteristics and the rupture of cerebral aneurysms. A total of 62 patient-specific models of cerebral aneurysms were constructed from 3D angiography images. Computational fluid dynamics simulations were performed under pulsatile flow conditions. The aneurysms were classified into different categories depending on the complexity and stability of the flow pattern, the location and size of the flow impingement region, and the size of the inflow jet. These features were analyzed for associations with history of rupture. A large variety of flow patterns was observed. It was found that 72% of ruptured aneurysms had complex or unstable flow patterns, 80% had small impingement regions and 76% had small jet sizes. Conversely, unruptured aneurysms accounted for 73%, 82% and 75% of aneurysms with simple stable flow patterns, large impingement regions and large jet sizes, respectively.

Paper Details

Date Published: 14 April 2005
PDF: 12 pages
Proc. SPIE 5746, Medical Imaging 2005: Physiology, Function, and Structure from Medical Images, (14 April 2005); doi: 10.1117/12.593974
Show Author Affiliations
Juan R. Cebral, George Mason Univ. (United States)
Marcelo A. Castro, George Mason Univ. (United States)
Daniel Millan, Pompeu Fabra Univ. (Spain)
Alejandro F. Frangi, Pompeu Fabra Univ. (Spain)
Christopher Putman, Inova Fairfax Hospital (United States)


Published in SPIE Proceedings Vol. 5746:
Medical Imaging 2005: Physiology, Function, and Structure from Medical Images
Amir A. Amini; Armando Manduca, Editor(s)

© SPIE. Terms of Use
Back to Top