Share Email Print

Proceedings Paper

Musca domestica inspired machine vision system with hyperacuity
Author(s): Dylan T. Riley; William M. Harman; Eric Tomberlin; Steven F. Barrett; Michael Wilcox; Cameron H. G. Wright
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Musca domestica, the common house fly, has a simple yet powerful and accessible vision system. Cajal indicated in 1885 the fly's vision system is the same as in the human retina. The house fly has some intriguing vision system features such as fast, analog, parallel operation. Furthermore, it has the ability to detect movement and objects at far better resolution than predicted by photoreceptor spacing, termed hyperacuity. We are investigating the mechanisms behind these features and incorporating them into next generation vision systems. We have developed a prototype sensor that employs a fly inspired arrangement of photodetectors sharing a common lens. The Gaussian shaped acceptance profile of each sensor coupled with overlapped sensor field of views provide the necessary configuration for obtaining hyperacuity data. The sensor is able to detect object movement with far greater resolution than that predicted by photoreceptor spacing. We have exhaustively tested and characterized the sensor to determine its practical resolution limit. Our tests coupled with theory from Bucklew and Saleh (1985) indicate that the limit to the hyperacuity response may only be related to target contrast. We have also implemented an array of these prototype sensors which will allow for two - dimensional position location. These high resolution, low contrast capable sensors are being developed for use as a vision system for an autonomous robot and the next generation of smart wheel chairs. However, they are easily adapted for biological endoscopy, downhole monitoring in oil wells, and other applications.

Paper Details

Date Published: 16 May 2005
PDF: 17 pages
Proc. SPIE 5758, Smart Structures and Materials 2005: Smart Sensor Technology and Measurement Systems, (16 May 2005); doi: 10.1117/12.593797
Show Author Affiliations
Dylan T. Riley, Univ. of Wyoming (United States)
William M. Harman, Univ. of Wyoming (United States)
Eric Tomberlin, Univ. of Wyoming (United States)
Steven F. Barrett, Univ. of Wyoming (United States)
Michael Wilcox, U.S. Air Force Academy (United States)
Cameron H. G. Wright, Univ. of Wyoming (United States)

Published in SPIE Proceedings Vol. 5758:
Smart Structures and Materials 2005: Smart Sensor Technology and Measurement Systems
Eric Udd; Daniele Inaudi, Editor(s)

© SPIE. Terms of Use
Back to Top