Share Email Print
cover

Proceedings Paper

Ultrahigh-resolution optical imaging of cellular structures of high-scattering biological tissues with whole-field optical coherence microcopy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Whole filed optical coherence microscopy system is used to image the cellular structures of highly scattering, as opposed to relatively transparent, biological tissues. The system used has imaging resolutions of 0.7 x 0.9 microns for axial x transversal directions, respectively, which represents arguably the highest resolution in the OCT filed reported so far, but with the compromise that imaging depth is less than that of the conventional OCT systems. Porcine tissues of articular cartilage and bronchus are used in the experimental demonstrations. Results demonstrate that whole filed OCT is capable of delineating faithfully the cells, nuclei and fiber bundles with an imaging depth up to 0.4 mm. It is envisaged that this technique would have an enormous applications in histopathology and other biological applications.

Paper Details

Date Published: 13 April 2005
PDF: 5 pages
Proc. SPIE 5690, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, (13 April 2005); doi: 10.1117/12.592671
Show Author Affiliations
Ruikang K. Wang, Cranfield Univ. (United Kingdom)
Ying Yang, Keele Univ. Medical School (United Kingdom)
Elvire Guyot, Ecole Superieure de Physique et de Chimie Industrielles (France)
Arnaud Dubois, Ecole Superieure de Physique et de Chimie Industrielles (France)


Published in SPIE Proceedings Vol. 5690:
Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX
Valery V. Tuchin; Joseph A. Izatt; James G. Fujimoto, Editor(s)

© SPIE. Terms of Use
Back to Top