Share Email Print
cover

Proceedings Paper

A least-square fitting algorithm for separating absorption and scattering profiles in spectroscopic optical coherence tomography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We report a new algorithm for spectroscopic optical coherence tomography (SOCT) that is theoretically optimal for extracting the spectral absorption profiles from turbid media when absorbing contrast agents are used. The algorithm is based on least-squares fitting of the extracted total attenuation spectra to the known absorption spectra of the contrast agents, while suppressing the contributions from spectrally dependent scattering attenuation. By this algorithm, the depth resolved contrast agent concentration can be measured even in the presence of high scattering. The accuracy and noise tolerance of the algorithm are analyzed by Monte-Carlo simulation. The algorithm was tested using single and multi-layer tissue phantoms.

Paper Details

Date Published: 13 April 2005
PDF: 8 pages
Proc. SPIE 5690, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, (13 April 2005); doi: 10.1117/12.592568
Show Author Affiliations
Chenyang Xu, Univ. of Illinois at Urbana-Champaign (United States)
Daniel L. Marks, Univ. of Illinois at Urbana-Champaign (United States)
Minh N. Do, Univ. of Illinois at Urbana-Champaign (United States)
Stephen A. Boppart, Univ. of Illinois at Urbana-Champaign (United States)


Published in SPIE Proceedings Vol. 5690:
Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX
Valery V. Tuchin; Joseph A. Izatt; James G. Fujimoto, Editor(s)

© SPIE. Terms of Use
Back to Top