Share Email Print
cover

Proceedings Paper

Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper describes a novel fabrication method for the manufacture of multi-level microfluidic structures using SU-8. The fabrication method is based on wafer bonding of SU-8 layers and multilayer lithography in SU-8 to form microchannels and other structures at different levels. In our method, non-UV-exposed SU-8 layers are transferred to SU-8 structured wafers at desirably low temperatures. This technique is particularly useful for building multi-level fluidic structures, because non-UV-exposed SU-8 can be used as cover for microchannels and the cover can then be lithographically structured, i.e., to form interconnects, after which subsequent transferring of non-UV-exposed SU-8 onto the wafer allows for the fabrication of interconnected multi-level channels and other structures. Examples of interconnected multi-level microchannels were realized using this newly developed method. Liquid has been introduced into the microchannels at different levels to reveal the desirable functionality of the interconnected multi-level channels. The method described here is easily implementable using standard photolithography and requires no expensive bonding equipment. More importantly, the fabrication procedure is CMOS compatible, offering the potential to integrate electronic devices and MEMS sensors into microfluidic systems.

Paper Details

Date Published: 22 January 2005
PDF: 7 pages
Proc. SPIE 5718, Microfluidics, BioMEMS, and Medical Microsystems III, (22 January 2005); doi: 10.1117/12.592244
Show Author Affiliations
Zheng-Chun Peng, Louisiana State Univ. (United States)
Zhong-Geng Ling, Louisiana State Univ. (United States)
Jost Goettert, Louisiana State Univ. (United States)
Josef Hormes, Louisiana State Univ. (United States)
Kun Lian, Louisiana State Univ. (United States)


Published in SPIE Proceedings Vol. 5718:
Microfluidics, BioMEMS, and Medical Microsystems III
Ian Papautsky; Isabelle Chartier, Editor(s)

© SPIE. Terms of Use
Back to Top