Share Email Print
cover

Proceedings Paper

Transient analysis of delaminated smart composite structures by incorporating Fermi-Dirac distribution function
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The transient response of delaminated smart composite laminates is studied using an improved layerwise laminate theory. The theory is capable of capturing interlaminar shear stresses that are critical to delamination. The Fermi-Dirac distribution function is combined with an improved layerwise laminate theory to model a smooth transition in the displacement and the strain fields of the delaminated interfaces during “breathing” of delaminated layers. Stress free boundary conditions are enforced at all free surfaces. Continuity in displacement field and transverse shear stresses are enforced at each ply level. In modeling piezoelectric composite plates, a coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. Numerical analysis is conducted to investigate the effect of nonlinearity in the transient vibration of bimodular behavior caused by the contact impact of delaminated interfaces. Composite plate with surface-bonded or embedded sensors, subject to external loads, are also investigated to study the effects on transient responses due to various sizes and locations of delamination.

Paper Details

Date Published: 19 May 2005
PDF: 12 pages
Proc. SPIE 5757, Smart Structures and Materials 2005: Modeling, Signal Processing, and Control, (19 May 2005); doi: 10.1117/12.592163
Show Author Affiliations
Heung Soo Kim, Inha Univ. (South Korea)
Anindya Ghoshal, United Technologies Research Ctr. (United States)
Jaehwan Kim, Inha Univ. (South Korea)
Seung-Bok Choi, Inha Univ. (South Korea)


Published in SPIE Proceedings Vol. 5757:
Smart Structures and Materials 2005: Modeling, Signal Processing, and Control
Ralph C. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top