Share Email Print
cover

Proceedings Paper

Operation of ionic polymer-metal composites in water
Author(s): Woosoon Yim; Kwang Jin Kim; Jason W. Paquette; Doyeon Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Ionic Polymer-Metal Composite (IPMC) for flexible hydrodynamic propulsor blades can provide many new opportunities in the naval platforms, especially in developing robotic unmanned vehicles for both surveillance and combat. IPMC materials are quietly operational since they have no vibration causing components, i.e. gears, motors, shafts, and etc. For small Autonomous Underwater Vehicles (AUV), these features are truly attractive due to limited space. Also, IPMCs are friendly to solid-state electronics with digital programming capabilities. Active control is thus possible. Another advantage of these materials should be recognized from the fact that they can be operational in a self-oscillatory manner. There are several issues that still need to be addressed such as propulsor design, testing, robotic control as well as theoretical modeling of the appropriate design. In this effort, IPMC is investigated for propulsor blades applications in NaCl solution and a propulsor model with a robust control scheme is explored. An analytical model of a segmented IPMC propulsor was formulated to be used as a building block for furthering the model to adequately accommodate the relaxation behavior of IPMCs and for describing the dynamics of the flexible IPMC bending actuator.

Paper Details

Date Published: 6 May 2005
PDF: 12 pages
Proc. SPIE 5759, Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD), (6 May 2005); doi: 10.1117/12.592036
Show Author Affiliations
Woosoon Yim, Univ. of Nevada/Las Vegas (United States)
Kwang Jin Kim, Univ. of Nevada/Reno (United States)
Jason W. Paquette, Univ. of Nevada/Reno (United States)
Doyeon Kim, Univ. of Nevada/Reno (United States)


Published in SPIE Proceedings Vol. 5759:
Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top