Share Email Print
cover

Proceedings Paper

Day, night, and all-weather security surveillance automation: synergy from combining two powerful technologies
Author(s): Vassilios Morellas; Chris Johnston; Andrew Johnson; Sharon D. Roberts; Glen L. Francisco
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Thermal imaging is rightfully a real-world technology proven to bring confidence to daytime, nighttime and all weather security surveillance. Automatic image processing intrusion detection algorithms are also a real world technology proven to bring confidence to system surveillance security solutions. Together, day, night and all weather video imagery sensors and automated intrusion detection software systems create the real power to protect early against crime, providing real-time global homeland protection, rather than simply being able to monitor and record activities for post event analysis. These solutions, whether providing automatic security system surveillance at airports (to automatically detect unauthorized aircraft takeoff and landing activities) or at high risk private, public or government facilities (to automatically detect unauthorized people or vehicle intrusion activities) are on the move to provide end users the power to protect people, capital equipment and intellectual property against acts of vandalism and terrorism. As with any technology, infrared sensors and automatic image intrusion detection systems for global homeland security protection have clear technological strengths and limitations compared to other more common day and night vision technologies or more traditional manual man-in-the-loop intrusion detection security systems. This paper addresses these strength and limitation capabilities. False Alarm (FAR) and False Positive Rate (FPR) is an example of some of the key customer system acceptability metrics and Noise Equivalent Temperature Difference (NETD) and Minimum Resolvable Temperature are examples of some of the sensor level performance acceptability metrics.

Paper Details

Date Published: 20 May 2005
PDF: 16 pages
Proc. SPIE 5778, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, (20 May 2005); doi: 10.1117/12.591969
Show Author Affiliations
Vassilios Morellas, Honeywell Labs. (United States)
Chris Johnston, Honeywell ACS (United States)
Andrew Johnson, Honeywell Labs. (United States)
Sharon D. Roberts, L-3 Communications Infrared Products (United States)
Glen L. Francisco, L-3 Communications Infrared Products (United States)


Published in SPIE Proceedings Vol. 5778:
Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV
Edward M. Carapezza, Editor(s)

© SPIE. Terms of Use
Back to Top