Share Email Print
cover

Proceedings Paper

Chemotherapeutic (cyclophosphamide) effects on rat breast tumor hemodynamics monitored by multi-channel NIRS
Author(s): Jae G. Kim; Dawen Zhao; Ralph P. Mason; Hanli Liu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We previously suggested that the two time constants quantified from the increase of tumor oxyhemoglobin concentration, ▵ [HbO2], during hyperoxic gas intervention are associated with two blood flow/perfusion rates in well perfused and poorly perfused regions of tumors. In this study, our hypothesis is that when cancer therapy is applied to a tumor, changes in blood perfusion will occur and be detected by the NIRS. For experiments, systemic chemotherapy, cyclophosphamide (CTX), was applied to two groups of rats bearing syngeneic 13762NF mammary adenocarcinomas: one group received a single high dose i. p. (200 mg/kg CTX) and the other group continuous low doses (20 mg/kg CTX i. p. for 10 days). Time courses of changes in tumor ▵ [HbO2] were measured at four different locations on the breast tumors non-invasively with an inhaled gas sequence of air-oxygen-air before and after CTX administration. Both rat body weight and tumor volume decreased after administration of high dose CTX, but continuous low doses showed decrease of tumor volume only. Baselines (without any therapy) intra- and inter-tumor heterogeneity of vascular oxygenation during oxygen inhalation were similar to our previous observations. After CTX treatment, significant changes in vascular hemodynamic response to oxygen inhalation were observed from both groups. By fitting the increase of ▵ [HbO2] during oxygen inhalation, we have obtained changes of vascular structure ratio and also of perfusion rate ratio before and after chemotherapy. The preliminary results suggest that cyclophosphamide has greatest effect on the well perfused tumor vasculature. Overall, our study supports our earlier hypothesis, proving that the effects of chemotherapy in tumor may be monitored non-invasively by using NIRS to detect changes of hemodynamics induced with respiratory challenges.

Paper Details

Date Published: 28 April 2005
PDF: 11 pages
Proc. SPIE 5693, Optical Tomography and Spectroscopy of Tissue VI, (28 April 2005); doi: 10.1117/12.591423
Show Author Affiliations
Jae G. Kim, The Univ. of Texas Southwestern Medical Ctr. at Dallas (United States)
The Univ. of Texas at Arlington (United States)
Dawen Zhao, The Univ. of Texas Southwestern Medical Ctr. at Dallas (United States)
Ralph P. Mason, The Univ. of Texas Southwestern Medical Ctr. at Dallas (United States)
Hanli Liu, The Univ. of Texas Southwestern Medical Ctr. at Dallas (United States)
The Univ. of Texas at Arlington (United States)


Published in SPIE Proceedings Vol. 5693:
Optical Tomography and Spectroscopy of Tissue VI
Britton Chance; Robert R. Alfano; Bruce J. Tromberg; Mamoru Tamura; Eva M. Sevick-Muraca, Editor(s)

© SPIE. Terms of Use
Back to Top