Share Email Print

Proceedings Paper

F2-laser microwelding of optical fibers and glass substrates
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Laser welding of optical glasses remains a challenging area today because of the weak optical absorption typically available with most commercial lasers and the brittle nature of glass. In this paper, we demonstrate for the first time to our best knowledge, the laser welding of telecommunication optical fiber onto a fused silica substrate. The 157-nm F2 laser was selected for the wide processing window that drives strong absorption at high fluence exposure > 1 J/cm2 without inducing microcrack formation. The method of second surface ablation was applied to the contact point between the glass plate and glass fiber to locally heat, melt, and reflow the glass and thereby weld together the two similar glasses. Mechanical pressure was applied while the laser beam was scanned along the sample contact to produce a line of overlapping welds of 25-um spot size each. Fused silica samples of up to several hundreds of microns thick could be welded owing to a large 157-nm penetration depth of 1/a ≈ 1 mm. A narrow 3.31 to 3.66 J/cm2 fluence window was found for laser welding through 160-um thick fused silica substrates. The F2-laser welding window is constrained by the need for sufficient transmitted fluence to melt the interface without too much fluence that will damaged the interface structure at the onset of ablation or induce front surface ablation.

Paper Details

Date Published: 12 April 2005
PDF: 8 pages
Proc. SPIE 5713, Photon Processing in Microelectronics and Photonics IV, (12 April 2005); doi: 10.1117/12.591130
Show Author Affiliations
Stephen Ho, Univ. of Toronto (Canada)
J. Stewart Aitchison, Univ. of Toronto (Canada)
Peter Robert Herman, Univ. of Toronto (Canada)

Published in SPIE Proceedings Vol. 5713:
Photon Processing in Microelectronics and Photonics IV
Jim Fieret; David B. Geohegan; Friedrich G. Bachmann; Willem Hoving; Frank Träger; Peter R. Herman; Jan J. Dubowski; Tatsuo Okada; Kunihiko Washio; Yongfeng Lu; Craig B. Arnold, Editor(s)

© SPIE. Terms of Use
Back to Top