Share Email Print
cover

Proceedings Paper

Ultrasensitive time-resolved nanoliter volume fluorometry based on UV LEDs and a channel photomultiplier tube
Author(s): Dayong Jin; Russell Connally; James Piper
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A capillary fluorometer was constructed using a 2 mW, 365 nm ultraviolet (UV) light emitting diode (LED) as the excitation source and a new-generation high-gain (3×108) channel photomultiplier tube. The use of a LED permitted rapid pulsing of the excitation source so that the instrument could be employed for time-resolved fluorescence (TRF) applications. A detection limit of ~2×108 molecules of BHHT (4,4’-bis (1",1",1",2",2",3",3"-heptafluoro-4",6"-hexanedion-6"yl)-o-tephenyl)-Eu (III) were resolved within a 1.25 nanoliter volume at a S/N ratio of 3:1. Ultimate sensitivity of the system was compromised due to visible luminescence emitted by the UV LED, centred around 550 nm extending to > 700 nm and 2nd-order exponentially decaying with lifetimes of 40 μs and 490 μs.

Paper Details

Date Published: 29 March 2005
PDF: 9 pages
Proc. SPIE 5699, Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III, (29 March 2005); doi: 10.1117/12.590127
Show Author Affiliations
Dayong Jin, Macquarie Univ. (Australia)
Russell Connally, Macquarie Univ. (Australia)
James Piper, Macquarie Univ. (Australia)


Published in SPIE Proceedings Vol. 5699:
Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III
Dan V. Nicolau; Dan V. Nicolau; Jörg Enderlein; Ramesh Raghavachari; Robert C. Leif; Daniel L. Farkas, Editor(s)

© SPIE. Terms of Use
Back to Top