Share Email Print
cover

Proceedings Paper

High-throughput flow cytometric screening of combinatorial chemistry bead libraries for proteomics and drug discovery
Author(s): James F. Leary; Lisa M. Reece; Xian-Bin Yang; David Gorenstein
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For proteomics drug discovery applications, combinatorial microbead thioaptamer libraries (one thioaptamer sequence per bead) are being created by split synthesis method, creating a "proteomics library" of protein capture beads which can be analyzed by high-throughput screening methods in this case, flow cytometry and cell sorting. Thioaptamers, oligonucleotides with thiophosphate backbone substitutions, function like antibodies in terms of recognizing specific protein sequences but have a number of advantages over antibody libraries. These proteomics beads can then be analyzed by high-speed flow cytometry and sorted to single-bead level depending on relative fluorescence brightness of fluorescently-labeled proteins, or for a specific protein from all of the molecules of cell subpopulations being analyzed. The thioaptamer sequences on a given bead showing high affinity for that protein can then be sequenced. Alternatively, the protein-capturing beads can be analyzed by MALDI-TOF mass spectrometry for analysis of the bound proteins. The beads can be thought of as equivalent to single-element positions of a proteomics chip arrays but with the advantage of being able to much more rapidly analyze hundreds of millions of possible amino acid sequences/epitopes on the basis of thioaptamer sequence affinities to select single sequences of interest. Additionally, those beads can be manipulated and isolated at the single bead level by high-throughput flow cytometry/cell sorting for subsequent sequencing of the thioaptamer sequences.

Paper Details

Date Published: 1 April 2005
PDF: 8 pages
Proc. SPIE 5692, Advanced Biomedical and Clinical Diagnostic Systems III, (1 April 2005); doi: 10.1117/12.589456
Show Author Affiliations
James F. Leary, Univ. of Texas Medical Branch/Galveston (United States)
Lisa M. Reece, Univ. of Texas Medical Branch/Galveston (United States)
Xian-Bin Yang, Univ. of Texas Medical Branch/Galveston (United States)
David Gorenstein, Univ. of Texas Medical Branch/Galveston (United States)


Published in SPIE Proceedings Vol. 5692:
Advanced Biomedical and Clinical Diagnostic Systems III
Tuan Vo-Dinh; Warren S. Grundfest; David A. Benaron; Gerald E. Cohn, Editor(s)

© SPIE. Terms of Use
Back to Top