Share Email Print
cover

Proceedings Paper

High-throughput flow cytometric screening of combinatorial chemistry bead libraries for proteomics and drug discovery
Author(s): James F. Leary; Lisa M. Reece; Xian-Bin Yang; David Gorenstein
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

For proteomics drug discovery applications, combinatorial microbead thioaptamer libraries (one thioaptamer sequence per bead) are being created by split synthesis method, creating a "proteomics library" of protein capture beads which can be analyzed by high-throughput screening methods in this case, flow cytometry and cell sorting. Thioaptamers, oligonucleotides with thiophosphate backbone substitutions, function like antibodies in terms of recognizing specific protein sequences but have a number of advantages over antibody libraries. These proteomics beads can then be analyzed by high-speed flow cytometry and sorted to single-bead level depending on relative fluorescence brightness of fluorescently-labeled proteins, or for a specific protein from all of the molecules of cell subpopulations being analyzed. The thioaptamer sequences on a given bead showing high affinity for that protein can then be sequenced. Alternatively, the protein-capturing beads can be analyzed by MALDI-TOF mass spectrometry for analysis of the bound proteins. The beads can be thought of as equivalent to single-element positions of a proteomics chip arrays but with the advantage of being able to much more rapidly analyze hundreds of millions of possible amino acid sequences/epitopes on the basis of thioaptamer sequence affinities to select single sequences of interest. Additionally, those beads can be manipulated and isolated at the single bead level by high-throughput flow cytometry/cell sorting for subsequent sequencing of the thioaptamer sequences.

Paper Details

Date Published: 1 April 2005
PDF: 8 pages
Proc. SPIE 5692, Advanced Biomedical and Clinical Diagnostic Systems III, (1 April 2005); doi: 10.1117/12.589456
Show Author Affiliations
James F. Leary, Univ. of Texas Medical Branch/Galveston (United States)
Lisa M. Reece, Univ. of Texas Medical Branch/Galveston (United States)
Xian-Bin Yang, Univ. of Texas Medical Branch/Galveston (United States)
David Gorenstein, Univ. of Texas Medical Branch/Galveston (United States)


Published in SPIE Proceedings Vol. 5692:
Advanced Biomedical and Clinical Diagnostic Systems III
Tuan Vo-Dinh; Warren S. Grundfest; David A. Benaron; Gerald E. Cohn, Editor(s)

© SPIE. Terms of Use
Back to Top