Share Email Print
cover

Proceedings Paper

Advances in high-resolution ultrasound-modulated optical tomography in biological tissues
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present an extension of our work on implementation of high-resolution ultrasound-modulated optical tomography that, based on optical contrast, can image several millimeters deep into soft biological tissues. A long-cavity confocal Fabry-Perot interferometer, which provides a large etendue and a short response time, was used to detect the ultrasound-modulated coherent light that traversed the scattering biological tissue. Using 15-MHz ultrasound, light absorbing structures placed >3 mm below the surface of chicken breast tissue were imaged with high contrast. The resolutions along the axial and lateral directions with respect to the ultrasound propagation direction were better than 70 um and 120 um, respectively. The resolutions can be scaled down further by using higher ultrasound frequencies. This technology is complementary to other imaging technologies, such as confocal microscopy and optical-coherence tomography, and has potential for broad biomedical applications.

Paper Details

Date Published: 25 April 2005
PDF: 5 pages
Proc. SPIE 5697, Photons Plus Ultrasound: Imaging and Sensing 2005: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, (25 April 2005); doi: 10.1117/12.589411
Show Author Affiliations
Sava Sakadzic, Texas A&M Univ. (United States)
Lihong V. Wang, Texas A&M Univ. (United States)


Published in SPIE Proceedings Vol. 5697:
Photons Plus Ultrasound: Imaging and Sensing 2005: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top