Share Email Print

Proceedings Paper

Imperfect learning for autonomous concept modeling
Author(s): Ching-Yung Lin; Xiaodan Song; Gang Wu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Most existing supervised machine learning frameworks assume there is no mistake or false interpretation on the training samples. However, this assumption may not be true in practical applications. In some cases, if human being is involved in providing training samples, there may be errors in the training set. In this paper, we study the effect of imperfect training samples on the supervised machine learning framework. We focus on the mathematical framework that describes the learnability of noisy training data. We study theorems to estimate the error bounds of generated models and the required amount of training samples. These errors are dependent on the amount of data trained and the probability of the accuracy of training data. Based on the effectiveness of learnability on imperfect annotation, we describe an autonomous learning framework, which uses cross-modality information to learn concept models. For instance, visual concept models can be trained based on the detection result of Automatic Speech Recognition, Closed Captions, or prior detection results of the same modality. Those detection results on an unsupervised training set serve as imperfect labeling for the models-to-build. A prototype system based on this learning technique has been built. Promising results have been shown on these experiments.

Paper Details

Date Published: 17 January 2005
PDF: 12 pages
Proc. SPIE 5682, Storage and Retrieval Methods and Applications for Multimedia 2005, (17 January 2005); doi: 10.1117/12.588299
Show Author Affiliations
Ching-Yung Lin, IBM Thomas J. Watson Research Ctr. (United States)
Xiaodan Song, Univ. of Washington (United States)
Gang Wu, Univ. of California/Santa Barbara (United States)

Published in SPIE Proceedings Vol. 5682:
Storage and Retrieval Methods and Applications for Multimedia 2005
Rainer W. Lienhart; Noboru Babaguchi; Edward Y. Chang, Editor(s)

© SPIE. Terms of Use
Back to Top