Share Email Print
cover

Proceedings Paper

Adaptive multifoveation for low-complexity video compression with a stationary camera perspective
Author(s): Sriram Sankaran; Rashid Ansari; Ashfaq A. Khokhar
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In human visual system the spatial resolution of a scene under view decreases uniformly at points of increasing distance from the point of gaze, also called foveation point. This phenomenon is referred to as foveation and has been exploited in foveated imaging to allocate bits in image and video coding according to spatially varying perceived resolution. Several digital image processing techniques have been proposed in the past to realize foveated images and video. In most cases a single foveation point is assumed in a scene. Recently there has been a significant interest in dynamic as well as multi-point foveation. The complexity involved in identification of foveation points is however significantly high in the proposed approaches. In this paper, an adaptive multi-point foveation technique for video data based on the concepts of regions of interests (ROIs) is proposed and its performance is investigated. The points of interest are assumed to be centroid of moving objects and dynamically determined by the foveation algorithm proposed. Fast algorithm for implementing region based multi-foveation processing is proposed. The proposed adaptive multi-foveation fully integrates with existing video codec standard in both spatial and DCT domain.

Paper Details

Date Published: 14 March 2005
PDF: 12 pages
Proc. SPIE 5685, Image and Video Communications and Processing 2005, (14 March 2005); doi: 10.1117/12.588114
Show Author Affiliations
Sriram Sankaran, Univ. of Illinois/Chicago (United States)
Rashid Ansari, Univ. of Illinois/Chicago (United States)
Ashfaq A. Khokhar, Univ. of Illinois/Chicago (United States)


Published in SPIE Proceedings Vol. 5685:
Image and Video Communications and Processing 2005
Amir Said; John G. Apostolopoulos, Editor(s)

© SPIE. Terms of Use
Back to Top