Share Email Print

Proceedings Paper

Computational algebraic topology-based video restoration
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a scheme for video denoising by diffusion of gray levels in the video domain, based on the Computational Algebraic Topology (CAT) image model. Contrary to usual approaches, using the heat transfer PDE and discretizing and solving it by a purely mathematical process, our approach considers the global expression of the heat transfer and decomposes it into elementary physical laws. Some of these laws link global quantities, integrated on some domains. They are called conservative relations, and lead to error-free expressions. The other laws depend on metric quantitites and require approximations to be expressed in this scheme. However, as every step of the resolution process has a physical interpretation, the approximations can be chosen wisely depending of the wanted behavior of the algorithm. We propose in this paper a nonlinear diffusion algorithm based on the extension to video of an existing 2D algorithm thanks to the flexibility of the topological support. After recalling the physical model for diffusion and the decomposition into basic laws, these laws are modeled in the CAT image model, yielding a numerical scheme. Finally, this model is validated with experimental results and extensions of this work are proposed.

Paper Details

Date Published: 14 March 2005
PDF: 12 pages
Proc. SPIE 5685, Image and Video Communications and Processing 2005, (14 March 2005); doi: 10.1117/12.586874
Show Author Affiliations
Alban Rochel, Univ. de Sherbrooke (Canada)
Djemel Ziou, Univ. de Sherbrooke (Canada)
Marie-Flavie Auclair-Fortier, Univ. de Sherbrooke (Canada)

Published in SPIE Proceedings Vol. 5685:
Image and Video Communications and Processing 2005
Amir Said; John G. Apostolopoulos, Editor(s)

© SPIE. Terms of Use
Back to Top