Share Email Print
cover

Proceedings Paper

High-capacity invertible data-hiding algorithm for digital audio
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A high-capacity, data-hiding algorithm that lets the user embed a large amount of data in a digital audio signal is presented in this paper. The algorithm also lets the user restore the original digital audio from the watermarked digital audio after retrieving the hidden data. The hidden information can be used to authenticate the audio, communicate copyright information, facilitate audio database indexing and information retrieval without degrading the quality of the original audio signal, or enhance the information content of the audio. It also allows secret communication between two parties over a digital communication link. The proposed algorithm is based on a generalized, reversible, integer transform, which calculates the average and pair-wise differences between the elements of a vector composed from the audio samples. The watermark is embedded into the pair-wise difference coefficients of selected vectors by replacing their least significant bits (LSB) with watermark bits. Most of these coefficients are shifted left by one bit before replacing their LSB. The vectors are carefully selected such that they remain identifiable after embedding and they do not suffer from overflow or underflow after embedding. To ensure reversibility, the locations of the shifted coefficients and the original LSBs are appended to the payload. Simulation results of the algorithm and its performance are presented and discussed in the paper.

Paper Details

Date Published: 21 March 2005
PDF: 12 pages
Proc. SPIE 5681, Security, Steganography, and Watermarking of Multimedia Contents VII, (21 March 2005); doi: 10.1117/12.586042
Show Author Affiliations
Brett Bradley, Digimarc Corp. (United States)
Adnan M. Alattar, Digimarc Corp. (United States)


Published in SPIE Proceedings Vol. 5681:
Security, Steganography, and Watermarking of Multimedia Contents VII
Edward J. Delp; Ping W. Wong, Editor(s)

© SPIE. Terms of Use
Back to Top