Share Email Print
cover

Proceedings Paper

Desirable features of an infrared imaging system for aerodynamic research
Author(s): Robert E. Wright; Chith K. Puram; Kamran Daryabeigi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Advantage of non-intrusiveness, capability for field measurement, and increased availability of IR imaging systems have resulted in their wider use for aerodynamic research. However, certain difficulties persist while using currently available systems for such applications. A critical evaluation of the IR imaging systems is presented on the basis of the state-of-the-art of IR imaging technology and experiences in wind tunnel and flight testing at NASA's Langley Research Center. The requirements for using IR thermography as a measurement tool in aerodynamic research are examined in terms of range, sensitivity, and accuracy of temperature measurement, temporal and spatial resolution, and features of target. Deficiencies of present IR imaging systems are identified, and user precautions to avoid such problems by proper selection and operation of these units are suggested. Different aspects of imager performance such as imager optics, video capabilities, and environmental tolerance are discussed. Electronic data recording and image processing hardware and software requirements are evaluated. Slit response tests and spatial resolution are discussed with the objective of obtaining reliable, accurate, and meaningful information from IR thermography measurements for aerodynamic studies.

Paper Details

Date Published: 1 April 1992
PDF: 10 pages
Proc. SPIE 1682, Thermosense XIV: An Intl Conf on Thermal Sensing and Imaging Diagnostic Applications, (1 April 1992); doi: 10.1117/12.58548
Show Author Affiliations
Robert E. Wright, NASA/Langley Research Ctr. (United States)
Chith K. Puram, Vigyan Inc. (United States)
Kamran Daryabeigi, NASA/Langley Research Ctr. (United States)


Published in SPIE Proceedings Vol. 1682:
Thermosense XIV: An Intl Conf on Thermal Sensing and Imaging Diagnostic Applications
Jan K. Eklund, Editor(s)

© SPIE. Terms of Use
Back to Top