Share Email Print
cover

Proceedings Paper

Two-way bistable out-of-plane actuator using Ti/SiO2 bilayer
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A novel two-way bistable bimorph bridge actuator for out of plane deflection is reported in this paper. The device has a 1200μm long, 50μm wide and 4μm thick composite bimorph beam consists of PECVD SiO2 and titanium layers. The end supports of the beam consist of 2 pairs of spring and are provided by 2 pairs of long titanium 'legs’ alongside the beam. 10mW and 4mW in the beam and legs for 3ms respectively is needed for 50 micron of out-of-plane deflection travel. By applying the appropriate joule heating sequence to the device, it is possible to snap the buckled beam upward or downward between two equilibrium states. An analytical and simulation models of heat transfer and tunable snapping are developed for the system. This paper presents the working principal, analysis, simulations of the device. The actuator will be used to move a micromirror, located at the centre of beam, for optical switching. This novel mechanism can have useful application in relays, optical switching and threshold sensors.

Paper Details

Date Published: 28 February 2005
PDF: 12 pages
Proc. SPIE 5649, Smart Structures, Devices, and Systems II, (28 February 2005); doi: 10.1117/12.582396
Show Author Affiliations
Kevin Yu, Univ. of New South Wales (Australia)
Aron Michael, Univ. of New South Wales (Australia)
Chee Yee Kwok, Univ. of New South Wales (Australia)


Published in SPIE Proceedings Vol. 5649:
Smart Structures, Devices, and Systems II
Said F. Al-Sarawi, Editor(s)

© SPIE. Terms of Use
Back to Top