Share Email Print
cover

Proceedings Paper

Novel electrocardiograph visualization techniques for multichannel data
Author(s): Damian Cooper; David D. Rowlands; Daniel A. James; Tim Cutmore
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Traditional ECG viewing techniques use a flat file structure and the relationship of the leads to physical structure is not clear. State space allows a 3D representation that is more representative of anatomical structure and electrical activity. This paper demonstrates how novel visualisation techniques allow easier identification of anomalies. The methods employed use Taken’s state-space theory to plot the amplitude of user selected leads on the relative axes in the state space domain. By plotting the combined values of separate leads, the direct relationship between the different viewing angles of the electrodes can be seen. A graphical user interface (GUI) was developed to view MIT-BIH database files, and files from a cardiology clinic, in various state-space formats. This software allows the user to rotate the 3D models and provides a cross-sectional view of the plots at user selected coordinates. The usefulness of these models were determined by combining the orthogonal views of leads I, aVF, and V2. This enabled the user to collaborate the vector values of the lead locations with the conventional ECG characteristics.

Paper Details

Date Published: 16 February 2005
PDF: 9 pages
Proc. SPIE 5651, Biomedical Applications of Micro- and Nanoengineering II, (16 February 2005); doi: 10.1117/12.582308
Show Author Affiliations
Damian Cooper, Griffith Univ. (Australia)
David D. Rowlands, Griffith Univ. (Australia)
Daniel A. James, Griffith Univ. (Australia)
Tim Cutmore, Griffith Univ. (Australia)


Published in SPIE Proceedings Vol. 5651:
Biomedical Applications of Micro- and Nanoengineering II
Dan V. Nicolau, Editor(s)

© SPIE. Terms of Use
Back to Top