Share Email Print
cover

Proceedings Paper

Plasma-induced processing for microfabrication of transparent materials using a Q-switched Nd:YAG laser
Author(s): Z. Z. Zhang; Shui Jie Qin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A laser-induced plasma in laser-material interaction due to the fact that it is in an extreme state of high-energy concentration is shown to be a powerful tool to perform drilling process to create micro channels in bulk quartz substrates under certain conditions. The plasma was induced by a Q-Switched Nd:YAG laser incident to a quartz substrate after pre-damaged by thermal-induced processing. The channels are of high quality with smooth kerf surface and the dimension of channels can be controlled from around 25 to 140 microns by a software program that interfaces with the laser system. A study of the dependence of drilling rate on the depth of channels provides a straightforward method for controlling the formation of plasma. The process technology, process characterization, and initial test results of the fabricated micro channels are presented in this paper.

Paper Details

Date Published: 23 February 2005
PDF: 8 pages
Proc. SPIE 5650, Micro- and Nanotechnology: Materials, Processes, Packaging, and Systems II, (23 February 2005); doi: 10.1117/12.582164
Show Author Affiliations
Z. Z. Zhang, Guizhou Univ. (China)
Shui Jie Qin, Guizhou Univ. (China)


Published in SPIE Proceedings Vol. 5650:
Micro- and Nanotechnology: Materials, Processes, Packaging, and Systems II
Jung-Chih Chiao; David N. Jamieson; Lorenzo Faraone; Andrew S. Dzurak, Editor(s)

© SPIE. Terms of Use
Back to Top