Share Email Print
cover

Proceedings Paper

Red-edge-excitation spectroscopy and protein dynamics control of intramolecular electron transfer in bianthryl
Author(s): Alexander P. Demchenko; Alexander I. Sytnik
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We report on excitation wavelength dependence of electron transfer reaction in bianthryl (BA) molecule bound by human serum albumin (HSA). The rate of this reaction is known to be controlled by the dynamics of the probe dielectric environment and, if the dynamic is slow in comparison with excited-state lifetime, by site-dependent photoselection at the red edge of BA absorption spectrum. In BA-HSA complex in the temperature range 10 - 40 degree(s)C we observe the absence of electron transfer at the main band and its high effectiveness at red-edge excitation. These results demonstrate that the distribution on protein-probe interaction energy is of substantial width and the local dynamics in the binding site is slower than a nanosecond. This distribution and slow dynamics are definitely the origins of inhomogeneous kinetics of the electron transfer reaction.

Paper Details

Date Published: 1 April 1992
PDF: 5 pages
Proc. SPIE 1640, Time-Resolved Laser Spectroscopy in Biochemistry III, (1 April 1992); doi: 10.1117/12.58214
Show Author Affiliations
Alexander P. Demchenko, A. V. Palladin Institute of Biochemistry (Ukraine)
Alexander I. Sytnik, A. V. Palladin Institute of Biochemistry (Ukraine)


Published in SPIE Proceedings Vol. 1640:
Time-Resolved Laser Spectroscopy in Biochemistry III
Joseph R. Lakowicz, Editor(s)

© SPIE. Terms of Use
Back to Top