Share Email Print
cover

Proceedings Paper

Laser-induced photoacoustic imaging for characterizing biological tissues
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Time-resolved photoacoustic imaging has been used to characterize Breast tissues for the purpose of discriminating between normal and Cancerous tumor areas of tissue. Ultrasonic thermoelastic waves were generated in Breast tissue by the absorption of nanosecond laser pulses at 193 nm produced by a frequency doubled Q-switched excimer laser in conjunction with an optical interferometer sensor was used to detect the thermoelastic and thermal waves. At 193 nm, differences in photoacoustic and photothermal signatures of normal tissue and Cancerous tumor were found to be highly enhanced. There was a clear and reproducible difference between the photacoustic and photothermal response of Cancerous tumor and normal tissue as a result of increased optical attenuation in Cancerous tumor. At 193 nm, the generation of subsurface thermoelastic waves provided a means of determining the structure and thickness of the tissue sample. The thermal waves provided a mean of determination the optical absorption of the tissue sample.

Paper Details

Date Published: 8 April 2005
PDF: 9 pages
Proc. SPIE 5689, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XIV, (8 April 2005); doi: 10.1117/12.581462
Show Author Affiliations
Yasser H. El-Sharkawy, Cairo Univ. (Egypt)
Yehia Badr, Cairo Univ. (Egypt)
Mahmoud Hassan, Cairo Univ. (Egypt)


Published in SPIE Proceedings Vol. 5689:
Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XIV
David Kessel, Editor(s)

© SPIE. Terms of Use
Back to Top