Share Email Print
cover

Proceedings Paper

Thermally-induced effects on normal and tumor of mouse mesentery based on measuring microcirculation parameters and temperature
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Thermotherapy could be selective to cure tumor because tumor is sensitive to temperature rise. The tumor blood flow rate, the average blood perfusion of tissue or temperature during heating was investigated respectively. However, thermal induced change in the vessel diameter of tumor was neglected. Especially, all of the above parameters were seldom measured at simultaneity. In this work, thermal induced effects on normal and tumor of mouse mesentery were investigated based on measuring microcirculation parameters and temperature. The dynamic blood flow rate was measured by the laser speckle microscopy, and the corresponding blood vessel diameter was recorded by the video camera, then the blood perfusion was deduced. Meanwhile, the temperature was recorded by high sensitively thermocouple. The results showed that the maximum change in diameter was larger than flow rate and blood perfusion for the both kinds of tissue under the same heating. Moreover, the maximum changes in vessel diameter, blood flow and perfusion in tumor are lower than those in normal during. The temperature rise in tumor changed more quickly than in normal tissue, and the critical temperature of thermal damage in the normal tissue was higher than the tumor. These measurements further proved that the tumor microcirculation was more sensitivity to heat than the normal tissue. This study is very important to know thermal induced affection from blood perfusion of micro vessel net both in tumor and normal tissue. It will help to explore thermotherapy mechanism and evaluate the thermotherapy effect, ascertain thermal dose, and select appropriate Rx.

Paper Details

Date Published: 18 January 2005
PDF: 8 pages
Proc. SPIE 5630, Optics in Health Care and Biomedical Optics: Diagnostics and Treatment II, (18 January 2005); doi: 10.1117/12.580797
Show Author Affiliations
Dan Zhu, Huazhong Univ. of Science and Techology (China)
Qingming Luo, Huazhong Univ. of Science and Techology (China)
Ting Zhang, Huazhong Univ. of Science and Techology (China)


Published in SPIE Proceedings Vol. 5630:
Optics in Health Care and Biomedical Optics: Diagnostics and Treatment II
Britton Chance; Mingzhe Chen; Arthur E. T. Chiou; Qingming Luo, Editor(s)

© SPIE. Terms of Use
Back to Top