Share Email Print
cover

Proceedings Paper

Characterization of thin films for optical sensors of food-borne pathogens
Author(s): Rima Chanda; Joseph Irudayaraj; Carlo G. Pantano
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The purpose of this study is to produce a platform device with the ability to detect a variety of pathogens based upon antigen-antibody interactions. The sensor comprises a nanoporous GeSe channel waveguide fabricated on a substrate, with an intermediate cladding buffer layer [GeSe2], which is required when the substrate does not transmit at the desired λ. The light from a laser source is then coupled through a fiber and prism into the waveguide and collected with the help of a lens into a detector. The top cladding layer is a Ge28Sb12Se60 thin film in which biomolecules can be 'tethered' via functionalization of the surface. Therefore the surface chemistry of the thin film and the specificity of antibody to its antigen are important considerations. This paper will focus primarily on the surface characterization of the top cladding layer using XPS, AFM, ellipsometry, contact angle measurements and diffuse reflectance analysis.

Paper Details

Date Published: 8 December 2004
PDF: 8 pages
Proc. SPIE 5591, Lab-on-a-Chip: Platforms, Devices, and Applications, (8 December 2004); doi: 10.1117/12.580730
Show Author Affiliations
Rima Chanda, The Pennsylvania State Univ. (United States)
Joseph Irudayaraj, The Pennsylvania State Univ. (United States)
Carlo G. Pantano, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 5591:
Lab-on-a-Chip: Platforms, Devices, and Applications
Linda A. Smith; Daniel Sobek, Editor(s)

© SPIE. Terms of Use
Back to Top