Share Email Print

Proceedings Paper

Highly automated nonparametric statistical learning for autonomous target recognition
Author(s): Keith C. Drake
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Image pattern recognition is presented as three sequential tasks: feature extraction, object plausibility estimation (determining class likelihoods), and decision processing. Several data- driven techniques yield discriminant functions to produce object plausibility estimates from image features, including traditional statistical methods and neural network approaches. A statistical learning algorithm which integrates multiple-regression algorithms, functional networking strategies, and a statistical modeling criterion is presented. It provides a non- parametric learning algorithm for the synthesis of discriminant functions. Image understanding tasks such as object plausibility estimation require robust modeling techniques to deal with the uncertainty prevalent in real-world data. Specifically, these complex tasks require robust and cost-effective techniques to successfully integrate multi-source information. AbTech and others have shown that implementation of the statistical learning concepts discussed provide a modeling approach ideal for information fusion tasks such as autonomous object recognition for tactical targets and space-based assets. The results of using this approach to develop a prototype aircraft recognition system is presented.

Paper Details

Date Published: 1 April 1992
PDF: 10 pages
Proc. SPIE 1623, The 20th AIPR Workshop: Computer Vision Applications: Meeting the Challenges, (1 April 1992); doi: 10.1117/12.58068
Show Author Affiliations
Keith C. Drake, AbTech Corp. (United States)

Published in SPIE Proceedings Vol. 1623:
The 20th AIPR Workshop: Computer Vision Applications: Meeting the Challenges

© SPIE. Terms of Use
Back to Top