Share Email Print
cover

Proceedings Paper

Perspex machine III: continuity over the Turing operations
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The perspex machine is a continuous machine that performs perspective transformations. It is a super-Turing machine that contains the Turing machine at discrete locations in perspex space. We show that perspex spaces can be constructed so that all of the operations in a Turing program lie in a continuum of similar operations in the space, except for the Turing halt which is always a discontinuous operation. We then show how to convolve a Turing program to produce an isolinear program that it is robust to missing instructions and degrades gracefully when started incorrectly, sometimes even recovering in performance. We hypothesize that animal brains are similarly robust and graceful because animal neurons share the geometrical properties of the perspex machine. Furthermore, convolution of Turing programs makes possible the band-pass filtering and reconstruction of programs. Global processing can then be obtained by executing the broad bands before the finer ones. Hence, any existing computer program can be compiled on a perspex machine to make it global in operation, robust to damage, and degrade gracefully in the presence of error. The three “Holy Grails” of AI -- globality, robustness, and graceful degradation -- can be supplied by a compiler. They do not require specific programming in individual cases because they are geometrical properties of the perspex machine.

Paper Details

Date Published: 17 January 2005
PDF: 12 pages
Proc. SPIE 5675, Vision Geometry XIII, (17 January 2005); doi: 10.1117/12.580665
Show Author Affiliations
James A. D. W. Anderson, Univ. of Reading (United Kingdom)


Published in SPIE Proceedings Vol. 5675:
Vision Geometry XIII
Longin Jan Latecki; David M. Mount; Angela Y. Wu, Editor(s)

© SPIE. Terms of Use
Back to Top