Share Email Print
cover

Proceedings Paper

Massively parallel neural network intelligent browse
Author(s): Thomas P. Maxwell; Philip M. Zion
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A massively parallel neural network architecture is currently being developed as a potential component of a distributed information system in support of NASA's Earth Observing System. This architecture can be trained, via an iterative learning process, to recognize objects in images based on texture features, allowing scientists to search for all patterns which are similar to a target pattern in a database of images. It may facilitate scientific inquiry by allowing scientists to automatically search for physical features of interest in a database through computer pattern recognition, alleviating the need for exhaustive visual searches through possibly thousands of images. The architecture is implemented on a Connection Machine such that each physical processor contains a simulated 'neuron' which views a feature vector derived from a subregion of the input image. Each of these neurons is trained, via the perceptron rule, to identify the same pattern. The network output gives a probability distribution over the input image of finding the target pattern in a given region. In initial tests the architecture was trained to separate regions containing clouds from clear regions in 512 by 512 pixel AVHRR images. We found that in about 10 minutes we can train a network to perform with high accuracy in recognizing clouds which were texturally similar to a target cloud group. These promising results suggest that this type of architecture may play a significant role in coping with the forthcoming flood of data from the Earth-monitoring missions of the major space-faring nations.

Paper Details

Date Published: 1 April 1992
PDF: 9 pages
Proc. SPIE 1623, The 20th AIPR Workshop: Computer Vision Applications: Meeting the Challenges, (1 April 1992); doi: 10.1117/12.58053
Show Author Affiliations
Thomas P. Maxwell, Univ. of Maryland (United States)
Philip M. Zion, Univ. of Maryland (United States)


Published in SPIE Proceedings Vol. 1623:
The 20th AIPR Workshop: Computer Vision Applications: Meeting the Challenges

© SPIE. Terms of Use
Back to Top