Share Email Print
cover

Proceedings Paper

Autonomous robot vision software design using Matlab toolboxes
Author(s): Maurice Tedder; Chan-Jin Chung
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The purpose of this paper is to introduce a cost-effective way to design robot vision and control software using Matlab for an autonomous robot designed to compete in the 2004 Intelligent Ground Vehicle Competition (IGVC). The goal of the autonomous challenge event is for the robot to autonomously navigate an outdoor obstacle course bounded by solid and dashed lines on the ground. Visual input data is provided by a DV camcorder at 160 x 120 pixel resolution. The design of this system involved writing an image-processing algorithm using hue, satuaration, and brightness (HSB) color filtering and Matlab image processing functions to extract the centroid, area, and orientation of the connected regions from the scene. These feature vectors are then mapped to linguistic variables that describe the objects in the world environment model. The linguistic variables act as inputs to a fuzzy logic controller designed using the Matlab fuzzy logic toolbox, which provides the knowledge and intelligence component necessary to achieve the desired goal. Java provides the central interface to the robot motion control and image acquisition components. Field test results indicate that the Matlab based solution allows for rapid software design, development and modification of our robot system.

Paper Details

Date Published: 25 October 2004
PDF: 8 pages
Proc. SPIE 5608, Intelligent Robots and Computer Vision XXII: Algorithms, Techniques, and Active Vision, (25 October 2004); doi: 10.1117/12.579776
Show Author Affiliations
Maurice Tedder, Lawrence Technological Univ. (United States)
Chan-Jin Chung, Lawrence Technological Univ. (United States)


Published in SPIE Proceedings Vol. 5608:
Intelligent Robots and Computer Vision XXII: Algorithms, Techniques, and Active Vision
David P. Casasent; Ernest L. Hall; Juha Roning, Editor(s)

© SPIE. Terms of Use
Back to Top