Share Email Print

Proceedings Paper

Optical multi-half-wave multi-frequency filtering technology
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Based on the optical thin film interference theory, a novel thin film multi-half-wave multi-frequency filtering technology applied to DWDM interleaver, a comb-like filter, is proposed in this report. A flexible on-demand design of arbitrary frequency spacing can be easily obtained by this thchnology. The parameters of this thin film structure have been analyzed and optimized, and a specific expression for these thin film structure has been described. 50G-spaced and 100G-spaced DWDM interleavers with flat-top passband consisting of less than 30 layers have been designed and fabricated. The process of fabrication is also discussed in this paper. These thin film interleavers have the advantages of good stability, arbitrary wavelength spacing between the adjacent channels, rectangular shape of the pass-band, less layers, low cost, and easy encapsulation, which would make it more attractive to use in DWDM system. The above-mentioned technology exhibits the flexibility in design and the advantages of thin film coating, which will have more applications besides interleaver.

Paper Details

Date Published: 10 January 2005
PDF: 8 pages
Proc. SPIE 5623, Passive Components and Fiber-based Devices, (10 January 2005); doi: 10.1117/12.579679
Show Author Affiliations
Shaoji Jiang, Zhongshan Univ. (China)
Yan Liu, Zhongshan Univ. (China)
Hezhou Wang, Zhongshan Univ. (China)

Published in SPIE Proceedings Vol. 5623:
Passive Components and Fiber-based Devices
Yan Sun; Shuisheng Jian; Sang Bae Lee; Katsunari Okamoto, Editor(s)

© SPIE. Terms of Use
Back to Top