Share Email Print

Proceedings Paper

Physical and digital simulations for IVA robotics
Author(s): Elaine M. Hinman; Gary L. Workman
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic maneuvers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

Paper Details

Date Published: 30 April 1992
PDF: 12 pages
Proc. SPIE 1611, Sensor Fusion IV: Control Paradigms and Data Structures, (30 April 1992); doi: 10.1117/12.57960
Show Author Affiliations
Elaine M. Hinman, NASA/Marshall Space Flight Ctr. (United States)
Gary L. Workman, Univ. of Alabama in Huntsville (United States)

Published in SPIE Proceedings Vol. 1611:
Sensor Fusion IV: Control Paradigms and Data Structures
Paul S. Schenker, Editor(s)

© SPIE. Terms of Use
Back to Top