Share Email Print
cover

Proceedings Paper

Latency features of SafetyNet ground systems architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS)
Author(s): James L. Duda; Joseph Mulligan; James Valenti; Michael Wenkel
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A key feature of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) is the Northrop Grumman Space Technology patent-pending innovative data routing and retrieval architecture called SafetyNetTM. The SafetyNetTM ground system architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), combined with the Interface Data Processing Segment (IDPS), will together provide low data latency and high data availability to its customers. The NPOESS will cut the time between observation and delivery by a factor of four when compared with today's space-based weather systems, the Defense Meteorological Satellite Program (DMSP) and NOAA's Polar-orbiting Operational Environmental Satellites (POES). SafetyNetTM will be a key element of the NPOESS architecture, delivering near real-time data over commercial telecommunications networks. Scattered around the globe, the 15 unmanned ground receptors are linked by fiber-optic systems to four central data processing centers in the U. S. known as Weather Centrals. The National Environmental Satellite, Data and Information Service; Air Force Weather Agency; Fleet Numerical Meteorology and Oceanography Center, and the Naval Oceanographic Office operate the Centrals. In addition, this ground system architecture will have unused capacity attendant with an infrastructure that can accommodate additional users.

Paper Details

Date Published: 11 January 2005
PDF: 9 pages
Proc. SPIE 5659, Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing, (11 January 2005); doi: 10.1117/12.578764
Show Author Affiliations
James L. Duda, NASA Goddard Space Flight Ctr. (United States)
Joseph Mulligan, National Oceanic and Atmospheric Administration (United States)
James Valenti, National Oceanic and Atmospheric Administration (United States)
Michael Wenkel, The Aerospace Corp. (United States)


Published in SPIE Proceedings Vol. 5659:
Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing
George J. Komar; Jinxue Wang; Toshiyoshi Kimura, Editor(s)

© SPIE. Terms of Use
Back to Top